Package: cellpypes (via r-universe)

August 24, 2024

Title Cell Type Pipes for Single-Cell RNA Sequencing Data **Version** 0.2.1

Description Annotate single-cell RNA sequencing data manually based on marker gene thresholds. Find cell type rules (gene+threshold) through exploration, use the popular piping operator '%>%' to reconstruct complex cell type hierarchies. 'cellpypes' models technical noise to find positive and negative cells for a given expression threshold and returns cell type labels or pseudobulks. Cite this package as Frauhammer (2022) <doi:10.5281/zenodo.6555728> and visit https://github.com/FelixTheStudent/cellpypes> for tutorials and newest features.

URL https://github.com/FelixTheStudent/cellpypes

BugReports https://github.com/FelixTheStudent/cellpypes/issues

License GPL (>= 3) Encoding UTF-8 LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.0

Suggests testthat (>= 3.0.0), knitr, rmarkdown, Seurat, DESeq2, RcppAnnoy, tibble, SeuratObject

Config/testthat/edition 3

Imports scUtils, ggplot2, Matrix, rlang, viridis, cowplot, dplyr, scales, methods, scattermore

Depends R (>= 2.10)

Repository https://felixthestudent.r-universe.dev

RemoteUrl https://github.com/felixthestudent/cellpypes

RemoteRef HEAD

RemoteSha 1b8c15d91078de4557d8553b2c22f1fdef685f3a

2 classify

Contents

classify	2
class_to_deseq2	4
feat	5
find_knn	6
is_classes	7
is_rules	8
knn_refine	8
plot_classes	9
plot_last	11
pool_across_neighbors	12
pseudobulk	13
pseudobulk_id	14
pype_code_template	15
pype_from_seurat	15
rule	16
simulated_umis	18
	10
	19

classify

Index

Classify cells on previously defined rules

Description

Classify cells on previously defined rules

Usage

```
classify(
  obj,
  classes = NULL,
  knn_refine = 0,
  replace_overlap_with = "Unassigned",
  return_logical_matrix = FALSE,
  overdispersion = 0.01
)
```

Arguments

obj A cellpypes object, see section **cellpypes Objects** below.

Character vector with one or more class names. If NULL (the default), plots finest available cell types (all classes that are not parent of any other class).

knn_refine

Numeric between 0 and 1. If 0, do not refine labels obtained from UMI count pooling. If larger than 0 (recommended: 0.1), cellpypes will try to label unassigned cells by majority vote, see section **knn_refine** below.

3 classify

replace_overlap_with

Character string, by default: "Unassigned". See section Handling overlap.

return_logical_matrix

logical. If TRUE, a logical matrix with classes in columns and cells in rows is returned instead of resolving overlaps with replace_overlap_with. If a single class is supplied, the matrix has exactly one column and the user can pipe it into "drop" to convert it to a vector.

overdispersion Defaults to 0.01, only change it if you know what you are doing. If set to 0, the NB simplifies to the Poisson distribution, and larger values give more variance. The 0.01 default value follows the recommendation by Lause, Berens and Kobak (Genome Biology 2021) to use size=100 in pnbinom for typical data sets.

Value

A factor with cell type labels.

cellpypes Objects

A cellpypes object is a list with four slots:

raw (sparse) matrix with genes in rows, cells in columns

totalUMI the colSums of obj\$raw

embed two-dimensional embedding of the cells, provided as data.frame or tibble with two columns and one row per cell.

neighbors index matrix with one row per cell and k columns, where k is the number of nearest neighbors (we recommend 15<k<100, e.g. k=50). Here are two ways to get the neighbors index matrix:

- Use find_knn(featureMatrix)\$idx, where featureMatrix could be principal components, latent variables or normalized genes (features in rows, cells in columns).
- use as(seurat@graphs[["RNA_nn"]], "dgCMatrix")> .1 to extract the kNN graph computed on RNA. The > .1 ensures this also works with RNA_snn, wknn/wsnn or any other available graph – check with names (seurat@graphs).

Handling overlap

Overlap denotes all cells for which rules from multiple classes apply, and these cells will be labeled as Unassigned by default. If you are in fact interested in where the overlap is, set return_logical_matrix=TRUE and inspect the result. Note that it matters whether you call classify("Tcell") or classify(c("Tcell", "Bcell") any existing overlap between T and B cells is labelled as Unassigned in this second call, but not in the first.

Replacing overlap happens only between mutually exclusive labels (such as Tcell and Bcell), but not within a lineage. To make an example, overlap is NOT replaced between child (PD1+Ttox) and parent (Ttox) or any other ancestor (Tcell), but instead the most detailed cell type (PD1+Ttox) is returned.

All of the above is also true for plot_classes, as it wraps classify.

4 class_to_deseq2

knn_refine

With knn_refine > 0, cellpypes refines cell type labels with a kNN classifier.

By default, cellpypes only assigns cells to a class if all relevant rules apply. In other words, all marker gene UMI counts in the cell's neighborhood all have to be clearly above/below their threshold. Since UMI counts are sparse (even after neighbor pooling done by cellpypes), this can leave many cells unassigned.

It is reasonable to assume an unassigned cell is of the same cell type as the majority of its nearest neighbors. Therefore, cellpypes implements a kNN classifier to further refine labels obtained by manually thresholding UMI counts. knn_refine = 0.3 means a cell is assigned the class label held by most of its neighbors unless no class gets more than 30 %. If most neighbors are unassigned, the cell will also be set to "Unassigned". Choosing knn_refine = 0.3 gives results reminiscent of clustering (which assigns all cells), while knn_refine = 0.5 leaves cells 'in between' two similar cell types unassigned.

We recommend looking at knn_refine = 0 first as it's faster and more directly tied to marker gene expression. If assigning all cells is desired, we recommend knn_refine = 0.3 or lower, while knn_refine = 0.5 makes cell types more 'crisp' by setting cells 'in between' related subtypes to "Unassigned".

Examples

```
classify(rule(simulated_umis, "Tcell", "CD3E", ">", 1))
```

class_to_deseq2

Create DESeq2 object for a given cell type

Description

Create a DESeq2 data set ('dds' in the DESeq2 vignette) for the specified class (cell type).

Usage

```
class_to_deseq2(obj, meta_df, class, design = ~condition)
```

Arguments

obj meta_df	A cellpypes object, see section cellpypes Objects below. Data frame where each column helps to identify a pseudobulk. Typical columns of meta_df are for example patient, treatment and cell type – anything that uniquely identifies a replicate / batch / 10x run. Each row in meta_df corresponds to a single cell in your raw count matrix.
class	The name of cellpypes class for which you want to test for differential expression.
design	A formula based on columns in meta_df. To test differential expression between two groups in meta_df\$condition, use formula ~ condition. More complex formulas (e.g. with interactions) are possible, for example ~ genotype + treatment + genotype:treatment.

feat 5

Value

```
A DESeq2 object (e.g. dds)
```

cellpypes Objects

A cellpypes object is a list with four slots:

raw (sparse) matrix with genes in rows, cells in columns

totalUMI the colSums of obj\$raw

embed two-dimensional embedding of the cells, provided as data.frame or tibble with two columns and one row per cell.

neighbors index matrix with one row per cell and k columns, where k is the number of nearest neighbors (we recommend 15<k<100, e.g. k=50). Here are two ways to get the neighbors index matrix:

- Use find_knn(featureMatrix)\$idx, where featureMatrix could be principal components, latent variables or normalized genes (features in rows, cells in columns).
- use as(seurat@graphs[["RNA_nn"]], "dgCMatrix")> .1 to extract the kNN graph computed on RNA. The > .1 ensures this also works with RNA_snn, wknn/wsnn or any other available graph check with names(seurat@graphs).

Examples

feat

Feature plots: Color gene expression in 2D embeddings

Description

Highlight gene expression in UMAP embeddings, for example.

Usage

```
feat(obj, features, fast = NULL, verbose = TRUE, ...)
```

6 find_knn

Arguments

obj A cellpypes object, see section **cellpypes Objects** below.

features A vector of genes (features) to colour by.

fast Set this to TRUE if you want fast plotting in spite of many cells (using the scat-

termore package). If NULL (default), cellpypes decides automatically and fast plotting is done for more than 10k cells, if FALSE it always uses geom_point.

verbose feat ignores gene names not present in your object and warns you about them

by default. verbose=FALSE will suppress the warning (not recommended in

interactive use).

... Arguments passed to cowplot's plot_grid function, for example ncol or rel_widths.

Value

A ggplot object (assembled by cowplot).

cellpypes Objects

A cellpypes object is a list with four slots:

raw (sparse) matrix with genes in rows, cells in columns

totalUMI the colSums of obj\$raw

embed two-dimensional embedding of the cells, provided as data.frame or tibble with two columns and one row per cell.

neighbors index matrix with one row per cell and k columns, where k is the number of nearest neighbors (we recommend 15<k<100, e.g. k=50). Here are two ways to get the neighbors index matrix:

- Use find_knn(featureMatrix)\$idx, where featureMatrix could be principal components, latent variables or normalized genes (features in rows, cells in columns).
- use as(seurat@graphs[["RNA_nn"]], "dgCMatrix")> .1 to extract the kNN graph computed on RNA. The > .1 ensures this also works with RNA_snn, wknn/wsnn or any other available graph check with names(seurat@graphs).

Examples

feat(simulated_umis, "CD3E")

find_knn	Find approximate k-nearest neighbors

Description

Implements RcppAnnoy's approximate nearest neighbor search (much faster than precise neighbors). Random search is made reproducible using set.seed(seed). Hint: If you pass find_knn's output directly to uwot::umap via the nn_method argument, make sure to set umap's argument n_sgd_threads to <=1 to ensure the UMAP embedding is reproducible.

is_classes 7

Usage

```
find_knn(featureMatrix, k = 50, n_trees = 50, seed = 42)
```

Arguments

featureMatrix Numeric matrix with features in rows, cells in columns. Rows could be normal-

ized genes or latent dimensions such as principal components.

k Number of neighbors to find.

n_trees RccpAnnoy builds a forest of n_trees trees. More trees gives higher precision

when querying. Default: 50.

seed Random seed for neighbor search, default: 42.

Value

List with two slots:

- idx A NxK matrix (N cells, K neighbors) containing the integer indexes of the approximate nearest neighbors in featureMatrix. Each cell is considered to be its own nearest neighbor, next to K-1 other neighbors.
- dist A NxK matrix containing the distances of the nearest neighbors.

Inspired by uwot::umap's return value when setting ret_nn=TRUE.

Examples

```
# Imagine we have 30 cells and 100 features:
fmat <- matrix(rnorm(3000), ncol=30)
nn <- find_knn(fmat,k=15)
# nn$idx has 30 rows and 15 columns.</pre>
```

Description

Check if obj\$classes looks as expected. is_class returns FALSE for example in these cases: is_classes(NULL) is_classes(data.frame()) is_classes(data.frame(class=c("T","T"), parent=c("..root..","..root..")))

Usage

```
is_classes(classes)
```

Arguments

classes The obj\$classes you want to check.

8 knn_refine

Value

logical scalar.

is_rules

Check if obj\$rules looks as expected.

Description

Check if obj\$rules looks as expected.

Usage

```
is_rules(rules)
```

Arguments

rules

The obj\$rules slot of a cellpypes object.

Value

logical scalar

knn_refine

Refine cell type labels with knn classifier

Description

Assigns the label that most neighbors have, given it is more than min_knn_prob. I've found empirically on the MALT data that min_knn_prob=0.5 gives good results, whether you classify the entire data set or just a single cell type. It simply excludes some of the cells that have more than 2 cell types in their neighborhood and none is much stronger than the others, so this is a reasonable, conservative filtering.

Usage

```
knn_refine(labels, neighbors, min_knn_prob = 0.5)
```

Arguments

labels Cell type labels as character or factor.
neighbors Neighbor graph, pass obj\$neighbors.

min_knn_prob Value between 0 and 1, defaults to 0.5. If the 'winning label' is below this

proportion of kNN that have it, knn_refine will return "Unassigned".

Value

Character vector with refined labels.

plot_classes 9

plot_classes

Call and visualize 'classify' function

Description

Call and visualize 'classify' function

Usage

```
plot_classes(
   obj,
   classes = NULL,
   knn_refine = 0,
   replace_overlap_with = "Unassigned",
   return_logical_matrix = FALSE,
   fast = NULL,
   point_size = 0.4,
   point_size_legend = 2,
   base_size = 15,
   overdispersion = 0.01
)
```

Arguments

obj A cellpypes object, see section **cellpypes Objects** below.

classes Character vector with one or more class names. If NULL (the default), plots

finest available cell types (all classes that are not parent of any other class).

knn_refine Numeric between 0 and 1. If 0, do not refine labels obtained from UMI count

pooling. If larger than 0 (recommended: 0.1), cellpypes will try to label unas-

signed cells by majority vote, see section knn_refine below.

replace_overlap_with

Character string, by default: "Unassigned". See section **Handling overlap**.

return_logical_matrix

logical. If TRUE, a logical matrix with classes in columns and cells in rows is returned instead of resolving overlaps with replace_overlap_with. If a single class is supplied, the matrix has exactly one column and the user can pipe it into

"drop" to convert it to a vector.

fast Set this to TRUE if you want fast plotting in spite of many cells (using the scat-

termore package). If NULL (default), cellpypes decides automatically and fast plotting is done for more than 10k cells, if FALSE it always uses geom_point.

point_size Dot size used by geom_point.

point_size_legend

Dot size displayed in legend. Legend colors are easier to read with larger points.

base_size The base_size of theme_bw, i.e. how large text is displayed. Default: 15.

10 plot_classes

overdispersion Defaults to 0.01, only change it if you know what you are doing. If set to 0, the NB simplifies to the Poisson distribution, and larger values give more variance. The 0.01 default value follows the recommendation by Lause, Berens and Kobak (Genome Biology 2021) to use size=100 in pnbinom for typical data sets.

Value

A ggplot2 object.

cellpypes Objects

A cellpypes object is a list with four slots:

raw (sparse) matrix with genes in rows, cells in columns

totalUMI the colSums of obj\$raw

embed two-dimensional embedding of the cells, provided as data.frame or tibble with two columns and one row per cell.

neighbors index matrix with one row per cell and k columns, where k is the number of nearest neighbors (we recommend 15<k<100, e.g. k=50). Here are two ways to get the neighbors index matrix:

- Use find_knn(featureMatrix)\$idx, where featureMatrix could be principal components, latent variables or normalized genes (features in rows, cells in columns).
- use as(seurat@graphs[["RNA_nn"]], "dgCMatrix")> .1 to extract the kNN graph computed on RNA. The > .1 ensures this also works with RNA_snn, wknn/wsnn or any other available graph check with names(seurat@graphs).

Handling overlap

Overlap denotes all cells for which rules from multiple classes apply, and these cells will be labeled as Unassigned by default. If you are in fact interested in where the overlap is, set return_logical_matrix=TRUE and inspect the result. Note that it matters whether you call classify("Tcell") or classify(c("Tcell", "Bcell") – any existing overlap between T and B cells is labelled as Unassigned in this second call, but not in the first.

Replacing overlap happens only between mutually exclusive labels (such as Tcell and Bcell), but not within a lineage. To make an example, overlap is NOT replaced between child (PD1+Ttox) and parent (Ttox) or any other ancestor (Tcell), but instead the most detailed cell type (PD1+Ttox) is returned.

All of the above is also true for plot_classes, as it wraps classify.

knn_refine

With knn_refine > 0, cellpypes refines cell type labels with a kNN classifier.

By default, cellpypes only assigns cells to a class if all relevant rules apply. In other words, all marker gene UMI counts in the cell's neighborhood all have to be clearly above/below their threshold. Since UMI counts are sparse (even after neighbor pooling done by cellpypes), this can leave many cells unassigned.

plot_last 11

It is reasonable to assume an unassigned cell is of the same cell type as the majority of its nearest neighbors. Therefore, cellpypes implements a kNN classifier to further refine labels obtained by manually thresholding UMI counts. knn_refine = 0.3 means a cell is assigned the class label held by most of its neighbors unless no class gets more than 30 %. If most neighbors are unassigned, the cell will also be set to "Unassigned". Choosing knn_refine = 0.3 gives results reminiscent of clustering (which assigns all cells), while knn_refine = 0.5 leaves cells 'in between' two similar cell types unassigned.

We recommend looking at knn_refine = 0 first as it's faster and more directly tied to marker gene expression. If assigning all cells is desired, we recommend knn_refine = 0.3 or lower, while knn_refine = 0.5 makes cell types more 'crisp' by setting cells 'in between' related subtypes to "Unassigned".

Examples

```
plot_classes(rule(simulated_umis, "T", "CD3E",">", 1))
```

plot_last

Plot the last modified rule or class

Description

Plot the last modified rule or class

Usage

```
plot_last(
  obj,
  show_feat = TRUE,
  what = "rule",
  fast = NULL,
  legend_rel_width = 0.3,
  overdispersion = 0.01
)
```

Arguments

obj A cellpypes object, see section **cellpypes Objects** below.

show_feat If TRUE (default), a second panel shows the feature plot of the relevant gene.

what Either "rule" or "class".

fast Set this to TRUE if you want fast plotting in spite of many cells (using the scat-

termore package). If NULL (default), cellpypes decides automatically and fast plotting is done for more than 10k cells, if FALSE it always uses geom_point.

legend_rel_width

Relative width compared to the other two plots (only relevant if show_feat=TRUE).

overdispersion Defaults to 0.01, only change if you know what you are doing. See further

classify.

Value

Returns a ggplot2 object with the plot.

cellpypes Objects

A cellpypes object is a list with four slots:

raw (sparse) matrix with genes in rows, cells in columns

totalUMI the colSums of obj\$raw

embed two-dimensional embedding of the cells, provided as data.frame or tibble with two columns and one row per cell.

neighbors index matrix with one row per cell and k columns, where k is the number of nearest neighbors (we recommend 15<k<100, e.g. k=50). Here are two ways to get the neighbors index matrix:

- Use find_knn(featureMatrix)\$idx, where featureMatrix could be principal components, latent variables or normalized genes (features in rows, cells in columns).
- use as(seurat@graphs[["RNA_nn"]], "dgCMatrix")> .1 to extract the kNN graph computed on RNA. The > .1 ensures this also works with RNA_snn, wknn/wsnn or any other available graph check with names(seurat@graphs).

Examples

```
plot_last(rule(simulated_umis, "T", "CD3E",">", 1))
```

pool_across_neighbors Sum up x across neighbors in a nearest neighbor graph.

Description

Neighbor pooling means that x is summed across the nearest neighbors.

Usage

```
pool_across_neighbors(x, neighbors)
```

Arguments

x Numeric vector.

neighbors Nearest neighbor graph provided as NxK index matrix (N observations, K neigh-

bors) or NxN adjacency matrix. Index matrices can be obtained with find_knn (specifically the slot idx in the list it returns).

Value

Numeric vector of length x.

pseudobulk 13

Examples

```
set.seed(42)
# simulate 30 cells without biological signal:
dummy_dat <- matrix(rpois(3000, .1), ncol=30)
# find 15 approximate nearest neighbors
neighbors <- find_knn(dummy_dat, k = 15)
# pool gene1 counts across neighbors:
neighbor_sum_gene1 <- pool_across_neighbors(dummy_dat[1,], neighbors$idx)</pre>
```

pseudobulk

Form pseudobulks from single cells.

Description

Sum up cells in count matrix raw for bulk RNA methods such as DESeq2.

Usage

```
pseudobulk(raw, pseudobulk_id)
```

Arguments

raw A matrix with raw UMI counts, cells in columns.

pseudobulk_id A factor that identifies which cells should go to which pseudobulk. Generate pseudobulk_ids with the pseudobulk_id function!

Value

A matrix where each column is a pseudobulk and each row a gene.

Examples

14 pseudobulk_id

pseudobulk_id

Generate unique IDs to identify your pseudobulks.

Description

This function generates unique IDs that are valid colnames as well. Use these IDs in function pseudobulk.

Usage

```
pseudobulk_id(factor_df)
```

Arguments

factor_df

Data frame where each column helps to identify a pseudobulk. Each row in factor_df corresponds to a single cell in your raw count matrix. Typical columns of factor_df are for example patient, treatment and cell type – anything that uniquely identifies a replicate.

Details

Wraps make.names to generate syntactically valid IDs. Use these IDs in the pseudobulk function. Note that this function combines all columns in factor_df, so only include the columns that uniquely identify replicates. Cells from the same experimental unit

Value

Factor with syntactically valid and unique IDs.

Examples

pype_code_template 15

pype_code_template

Generate code template for cellpype rules

Description

This function rule code snippet with neat text alignment to the console. Paste this into your script and start changing the rules.

Usage

```
pype_code_template(n_rules = 3)
```

Arguments

n_rules

Number of lines (rules) to generate

Value

Prints rules to the consoles.

Examples

```
pype_code_template()
```

pype_from_seurat

Convert Seurat to cellpypes object.

Description

Start cellpyping a Seurat object. This function saves the user from building his own cellpypes object, which is done with list(umi, neighbors, embed, totalUMI).

Usage

```
pype_from_seurat(seurat, graph_name = NULL)
```

Arguments

seurat

A Seurat object.

graph_name

Supply one of the graphs. To see options, type names(seurat@graphs). If left empty (NULL, the default), pype_from_seurat will try to guess the correct name

for you.

Value

A cellpypes object.

16 rule

cellpypes Objects

A cellpypes object is a list with four slots:

raw (sparse) matrix with genes in rows, cells in columns

totalUMI the colSums of obj\$raw

embed two-dimensional embedding of the cells, provided as data.frame or tibble with two columns and one row per cell.

neighbors index matrix with one row per cell and k columns, where k is the number of nearest neighbors (we recommend 15<k<100, e.g. k=50). Here are two ways to get the neighbors index matrix:

- Use find_knn(featureMatrix)\$idx, where featureMatrix could be principal components, latent variables or normalized genes (features in rows, cells in columns).
- use as(seurat@graphs[["RNA_nn"]], "dgCMatrix")> .1 to extract the kNN graph computed on RNA. The > .1 ensures this also works with RNA_snn, wknn/wsnn or any other available graph check with names(seurat@graphs).

rule

Add a cell type rule.

Description

This is the heart of cellpypes and best used by piping from one rule into the next with magrittr::%>%. Check out examples at gitHub)!

Usage

```
rule(
  obj,
  class,
  feature,
  operator = ">",
  threshold,
  parent = NULL,
  use_CP10K = TRUE
)
```

Arguments

obj	A cellpypes object, see section cellpypes Objects below.
class	Character scalar with the class name. Typically, cellpypes classes are literature cell types ("T cell") or any subpopulation of interest ("CD3E+TNF+LAG3-").
feature	Character scalar naming the gene you'd like to threshold. Must be a row name in obj\$raw.
operator	One of c(">","<"). Use ">" for positive (CD3E+) and "<" for negative markers (MS4A1-).

rule 17

threshold Numeric scalar with the expression threshold separating positive from negative

cells. Experiment with this value, until expression and selected cells agree well

in UMAP (see examples on gitHub).

parent Character scalar with the parent class (e.g. "T cell" for "Cytotoxic T cells").

Only has to be specified once per class (else most recent one is taken), and

defaults to "..root.." if NULL is passed in all rules.

use_CP10K If TRUE, threshold is taken to be counts per 10 thousand UMI counts, a mea-

sure for RNA molecule fractions. We recommend CP10K for human intuition (1 CP10K is roughly 1 UMI per cell), but the results are the exact same whether

you use threshold=1, CP10K=TRUE or threshold=1e-4, CP10K=FALSE.

Details

Calling rule is computationally cheap because it only stores the cell type rule while all computations happen in classify. If you have classes with multiple rules, the most recent parent and feature-threshold combination counts. It is ok to mix rules with and without use_CP10K=TRUE.

Value

obj is returned, but with the rule and class stored in obj\$rules and obj\$classes, to be used by classify.

cellpypes Objects

A cellpypes object is a list with four slots:

raw (sparse) matrix with genes in rows, cells in columns

totalUMI the colSums of obj\$raw

embed two-dimensional embedding of the cells, provided as data.frame or tibble with two columns and one row per cell.

neighbors index matrix with one row per cell and k columns, where k is the number of nearest neighbors (we recommend 15<k<100, e.g. k=50). Here are two ways to get the neighbors index matrix:

- Use find_knn(featureMatrix)\$idx, where featureMatrix could be principal components, latent variables or normalized genes (features in rows, cells in columns).
- use as(seurat@graphs[["RNA_nn"]], "dgCMatrix")> .1 to extract the kNN graph computed on RNA. The > .1 ensures this also works with RNA_snn, wknn/wsnn or any other available graph check with names(seurat@graphs).

See Also

To have nicely formatted code in the end, copy the output of pype_code_template() to your script and start editing.

18 simulated_umis

Examples

```
# T cells are CD3E+:
obj <- rule(simulated_umis, "T", "CD3E", ">", .1)
# T cells are MS4A1-:
obj <- rule(obj, "T", "MS4A1", "<", 1)
# Tregs are a subset of T cells:
obj <- rule(obj, "Treg", "FOXP3", ">", .1, parent="T")
```

 $simulated_umis$

Simulated scRNAseq data

Description

This data serves to develop cellpypes and to illustrate its functionality. I made it up entirely.

Usage

```
simulated_umis
```

Format

A list with 4 entries:

raw Raw (unnormalized) UMI counts for a handful of genes, last row are totalUMI.
neighbors Indices of each cell's 50 nearest neighbors.
embed Simulated UMAP embedding.
celltype Cell type label that I used to simulate the data.

Source

Very simple simulation (c.f. data-raw/simulated_umis.R in source code).

Index

```
* datasets
    simulated_umis, 18
{\tt class\_to\_deseq2,4}
classify, 2, 11, 17
feat, 5
find_knn, 6, 12
geom_point, 9
is_classes, 7
is_rules, 8
knn_refine, 8
list, 3, 5, 6, 10, 12, 16, 17
make.names, 14
plot_classes, 9
plot_grid, 6
plot_last, 11
pnbinom, 3, 10
pool_across_neighbors, 12
pseudobulk, 13, 14
pseudobulk_id, 13, 14
pype_code_template, 15
pype_from_seurat, 15
rule, 15, 16
simulated\_umis, 18
theme_bw, 9
```